An alternate pathway for visual signal integration into the hypothalamo-pituitary axis: retinorecipient intergeniculate neurons project to various regions of the hypothalamus and innervate neuroendocrine cells including those producing dopamine.
نویسنده
چکیده
Using tract tracing and immunocytochemistry, this study explored the connectivity between lateral geniculate efferents and neurons of the hypothalamus, including those producing dopamine, that have direct access to fenestrated capillaries. It was also determined whether the intergeniculate neurons that give rise to hypothalamic projections are targeted by retinal axons. Within the hypothalamus, Phaseolus vulgaris leucoagglutinin-labeled, lateral geniculate efferents were observed in the suprachiasmatic nucleus, subparaventricular area, periventricular nuclei, medial preoptic areas, and between the arcuate and ventromedial nuclei. In these sites, intergeniculate efferents contacted populations of neurons that were retrogradely labeled from fenestrated capillaries by the intraperitoneal injection of fluorogold. Hypothalamic dopamine neurons, a population of which was neuroendocrine, were also synaptic targets of lateral geniculate efferents. After injection of the retrograde tracer fluorogold into these hypothalamic projection sites in parallel with bilateral enucleation, retrogradely labeled perikarya were restricted to the intergeniculate leaflet. All of the labeled perikarya contained infolded nuclei, and their distal dendrites were frequently found to be contacted by degenerated, retinal fibers. This study provides morphological evidence for a signaling pathway from the retina through the intergeniculate leaflet to hypothalamic cells that participate in neuroendocrine regulations. These observations raise the possibility that visual signals independent of the circadian clock may also influence the hypothalamo-pituitary axis. In light of the overlapping distribution of intergeniculate and suprachiasmatic efferents in the hypothalamus and their similar relationship with neuroendocrine cells, it is suggested that integration of circadian and visual signals can occur outside of the suprachiasmatic nucleus to regulate endocrine rhythms.
منابع مشابه
Suprachiasmatic efferents avoid phenestrated capillaries but innervate neuroendocrine cells, including those producing dopamine.
The key role of the suprachiasmatic nucleus in the diurnal regulation of anterior pituitary hormone secretions, including PRL, is well established. However, the pathway via suprachiasmatic signals reach the pituitary is ill defined. To determine whether suprachiasmatic efferents innervate neuroendocrine cells, the anterograde tracer, Phaseolus vulgaris leukoagglutinin, was injected iontophoreti...
متن کاملInsulin receptors and signal transduction proteins in the hypothalamo-hypophyseal system: a review on morphological findings and functional implications.
Receptors for insulin are widely distributed in the brain and pituitary. The current hypothesis on receptor function in these regions points to a role of insulin as a mediator in the communication of the peripheral endocrine system with the brain via various steps of the neuroendocrine axis. Recent data demonstrate that receptor-positive neurons in the brain, i.e. in the hypothalamus, and secre...
متن کاملNeurocircuitry of stress integration: anatomical pathways regulating the hypothalamo-pituitary-adrenocortical axis of the rat.
The hypothalamo-pituitary-adrenocortical (HPA) axis is recruited by the organism in response to real or perceived threats to homeostasis ("stress"). Regulation of this neuroendocrine system is accomplished by modulation of secretory tone in hypophysiotrophic neurons of the medial parvocellular paraventricular nucleus. Excitation of these neurons is mediated by several sources: direct (and perha...
متن کاملLeptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei.
Leptin has profound effects on feeding, metabolism, and neuroendocrine status. Evidence indicates that the hypothalamus coordinates these responses, though the specific brain pathways engaged by leptin remain obscure. The paraventricular nucleus of the hypothalamus (PVH) regulates pituitary gland function and feeding, and innervates autonomic preganglionic neurons, making it a candidate to regu...
متن کاملGhrelin Indirectly Activates Hypophysiotropic CRF Neurons in Rodents
Ghrelin is a stomach-derived hormone that regulates food intake and neuroendocrine function by acting on its receptor, GHSR (Growth Hormone Secretagogue Receptor). Recent evidence indicates that a key function of ghrelin is to signal stress to the brain. It has been suggested that one of the potential stress-related ghrelin targets is the CRF (Corticotropin-Releasing Factor)-producing neurons o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 4 شماره
صفحات -
تاریخ انتشار 1998